Kevin Shelburne

Kevin B. Shelburne

Research Professor

What I do

My research utilizes novel methodologies for measuring and simulating musculoskeletal injury and treatment. There is no practical or ethical way to measure the forces, stresses, and strains that occur inside the human body during activities of daily living, work, and sport. Musculoskeletal modeling and simulation enables estimation and prediction of the demand on tissues during activity. This information allows the investigation of treatments designed to address orthopedic pathology and prevent injury. Musculoskeletal modeling is a predictive computer simulation approach that relies on detailed representation of the bones, muscles, and ligament anatomy. My current work is supported by the National Institutes of Health and industry sponsors, and focuses on the development and demonstration of a multi-scale musculoskeletal models of the human body that are capable of realistic simulation of dynamic physical activity and applied to current issues in total joint replacement. This initiative fills a broad need in medical research for more realistic representation of the human tissues in simulation. My research is also focused on the development and use of biplane fluoroscopy. Biplane fluoroscopy is a stereo x-ray technique that provides very accurate 3D tracking of bones and implants during dynamic activity. Using biplane fluoroscopy, the small relative motions of the bones of the joints of the human body can be measured. Not only does this provide a surrogate measure of the demand on the muscles and soft tissues, it is also the only method of obtaining measurements at the millimeter scale of soft tissue injury and repair.

Professional Biography

Dr. Shelburne received his bachelors and masters degrees in Mechanical Engineering from Texas A&M University, and his Ph.D. from the University of Texas. Kevin came to biomechanics through work in the aerospace industry in human space flight systems. In 2000, he joined the Biomechanics Research Laboratory at the Steadman-Philippon Research Institute in Vail, Colorado as Assistant Director. In 2010, he began work as a Senior Research Scientist in the department of Mechanical and Materials Engineering at the University of Denver, and in 2016 moved to the position of Research Professor. Kevin spends his spare time with family and cycling, motorcycling, mountaineering, and skiing.


  • Ph.D., Mechanical Engineering, University of Texas at Austin, 1997
  • MS, Mechanical Engineering, Texas A&M University, 1988
  • BS, Mechanical Engineering, Texas A&M University, 1985

Featured Publications

Ali, A. A., Mannen, E., Rullkoetter, P. J., & Shelburne, K. B. (2020). Validated Computational Framework for Evaluation of In Vivo Knee Mechanics. Journal of biomechanical engineering, 142(8).
Hume, D. R., Rullkoetter, P. J., & Shelburne, K. B. (2020). ReadySim: A computational framework for building explicit finite element musculoskeletal simulations directly from motion laboratory data. International journal for numerical methods in biomedical engineering, 36(11), e3396.
Rooks, N. B., Erdemir, A., Halloran, J. P., Laz, P. J., Shelburne, K. B., Hume, D. R., et al. (2021). A Method to Compare Heterogeneous Types of Bone and Cartilage Meshes. Journal of biomechanical engineering, 143(11).
Hamilton, L. D., Hum, D., Higinbotham, S. E., Behnam, Y., Clary, C. W., & Shelburne, K. B. (2021). Apparatus for In Vivo Laxity Assessment Using High-Speed Stereo Radiography, Journal of Medical Devices. Journal of Medical Devices, 15(4).
Rooks, N. B., Erdemir, A., Halloran, J. P., Laz, P. J., Shelburne, K. B., Hume, D. R., et al. (2021). Deciphering the "Art" in Modeling and Simulation of the Knee Joint: Variations in Model Development. Journal of biomechanical engineering, 143(6).
Song, K., Shelburne, K. B., Pascual-Garrido, C., Clohisy, J. C., & Harris, M. D. (2020). Dysplastic hip anatomy alters muscle moment arm lengths, lines of action, and contributions to joint reaction forces during gait. Journal of biomechanics, 110, 109968.
Viggiani, D., Mannen, E., Nelson-Wong, E., Wong, A., Ghiselli, G., Shelburne, K. B., et al. (2020). Lumbar Intervertebral Kinematics During an Unstable Sitting Task and Its Association With Standing-Induced Low Back Pain. Journal of applied biomechanics, 1-13.