Chadd Clary

Chadd Clary

Assistant Professor

  • Faculty
  • Ritchie School of Engineering and Computer Science
  • Department of Mechanical & Materials Engineering

What I do

I specialize in the design, development, and evaluation of new medical devices and surgical techniques with a focus on total joint replacement. I conduct research using specialized experimental and computational methods to better understand how the performance of joint replacement can be maximized to improve outcomes for patients receiving these devices.

Specialization(s)

Orthopaedic Biomechanics Total Joint Replacement Experimental Methods Computational Modeling

Professional Biography

Prior to joining the faculty at the University of Denver, I spent seven years working for a major medical device company developing new total knee and hip replacement technology. Now at the University of Denver, I leverage the lessons I learned developing medical devices to conduct research that will lead to improved outcomes for patients with total joint replacement. I have a particular research interests in developing improved experimental and computational tools to evaluate orthopaedic medical devices and development of patient movement tracking technology that can be deployed outside the lab to better characterize the performance of patients with osteoarthritis and joint replacement. I also have an interest in entrepreneurship and supporting medical device start-ups to enable the transition of ideas from our research into products that can truly impact patients lives.

Degree(s)

  • Ph.D., Mechanical Engineering, University of Kansas, 2009
  • MS, Mechanical Engineering, University of Kansas, 2005
  • BS, Mechanical Engineering, University of Kansas, 2002

Professional Affiliations

  • Orthopaedic Research Society

Research

My lab has several ongoing research projects, ranging from biomechanical evaluation of new total joint replacement devices and surgical techniques in the knee and hip to measuring in vivo patient movement quality using inertial measurement units and machine learning algorithms.

Key Projects

  • Improved Treatment of Joint Infection in Total Knee Arthroplasty
  • A Lower Extremity Neuromusculoskeletal Human Simulator: Addressing Multiscale Challenges
  • Evaluation of peri prosthetic femoral fixation

Featured Publications

  • Computational evaluation of TKR stability using feedback-controlled compressive loading
  • How can we use computational modeling to improve TKA? Modeling Stability and Mobility in the Implanted Knee
  • Loading and kinematic profiles for patellofemoral durability testing
  • Mechanical Testing of knee implants
  • Validation of model-predicted tibial tray micromotion in cementless total knee replacement during activities of daily living